
Pipelined Processor Energy Optimizations

Cory Avrutis
Florida State University

February 2022

Abstract

Over the last two decades we have seen power consumption severely limit the capability of
processor performance growth. With this limiting factor being so prevalent, it has driven com-
puter architects and engineers to present innovative techniques to reduce the energy consump-
tion within a processor. This paper discusses three distinct techniques that seek to address this
concern, and their implementations. Dynamic Voltage and Frequency Scaling (DVFS), Pipeline
Stage Unification (PSU), and Static Pipelining are the techniques presented in this paper. DVFS
is the technique with the most widespread use in modern machines but is severely limited by
the pace of technological advances. PSU is a proposed technique with lesser limitations and
is predicted to have a continual increase in effectiveness over DVFS as technology advances.
Static Pipelining is a more recent technique proposed which aims to restructure a processor at
the architectural level in order to circumvent various inefficiencies found in the typical pipelined
processor. Industry has yet to impose a new standard for processor energy optimization, but
as academia continues to push for innovation, new techniques will emerge that will overshadow
the dated and less efficient techniques.

1 Introduction

Society has seen a great boom in processor speed over the past five decades, but within the last two
decades, power consumption has been a prevalent limiting factor of these advances. The modern-
day challenge of increasing processor performance stems from the thermal limitations of these
processors, which is directly impacted by power consumption. This is just one reason why scientists
and engineers are working towards reducing the energy consumption of processors. Reducing the
energy consumption in processors is not a new idea, but new techniques to achieve this reduction
continue to emerge.

This paper will discuss three techniques to reduce the energy consumption of a processor. First,
Section 2 will discuss Dynamic Voltage and Frequency Scaling, a brief overview of its implementa-
tion, and its current limitations for reducing energy consumption. Section 3 will discuss Pipeline
Stage Unification, its implementation, and the ways it reduces energy consumption. Section 4
introduces a fairly new approach to energy optimization called Static Pipelining and the various
ways it can reduce energy consumption. Lastly, Section 5 will give a synopsis of the paper and the
various energy reduction techniques.

2 Dynamic Voltage and Frequency Scaling

Dynamic Voltage and Frequency Scaling (DVFS ) is a technique to reduce the energy consumption
of a processor. The optimization comes in two parts, the clock frequency scaling and the supply

1



voltage scaling for the circuit. As we reduce the clock frequency, we can also reduce the supply
voltage to the circuit, since the supply voltage is dependent on the clock frequency of the circuit.
After a management interval passes, the workload of the CPU is analyzed and the clock frequency
is adjusted accordingly[1]. If we look at the equation for total power consumption within a circuit
it shows the relationship between the frequency and supply voltage [1].

PowerConsumption = C ∗ f ∗ V 2 + Powerstatic
[1]

In the above formula, f represents the clock frequency of the circuit and V represents the
supply voltage to the circuit. We can ascertain that most of the power being consumed is within
CfV 2 the portion of the formula and that the additional static power is of a lower order so can
be ignored for optimization purposes. The majority of power reduction is attained through the V 2

relationship as it is the only exponential term in the formula [1]. Therefore, reducing the clock
frequency (f) will proportionally reduce the supply voltage resulting in a discernible reduction in
power consumption[1].

2.1 Limitations on DVFS Effectiveness

E. Le Sueur and G. Heiser describe different factors that influence the effectiveness of DVFS. Over-
time, transistor feature size has decreased, and will continue to decrease[1]. As these sizes decrease,
the voltage leakage will naturally grow resulting in higher static power consumption[1]. DVFS
reduces power consumption by reducing the dynamic consumption (CfV 2) and has no control over
the static power (Powerstatic) being consumed. Consequently, as the static power consumption
naturally increases, the effectiveness of DVFS will naturally decrease[1]. There is no solution to
this increase in static power consumption, so this is a heavy limitation on DVFS.

Another DVFS limitation was introduced with the wide-spread use of multi-core processors[1].
For single core processors, DVFS must only analyze the workload of one core to determine whether
to scale or not. On multi-core processors, DVFS implementations force each core to operate at
the same voltage, which will always be the voltage supplied to the core with the highest frequency.
Since DVFS must analyze the workload of each core on a multi-core processor, there will always
be a small inaccuracy when these workloads are averaged using the highest frequency[1].

3 Pipeline Stage Unification

Pipeline Stage Unification (PSU) is a technique to lower energy consumption in processors intro-

duced by H. Shimada, H. Ando, and T. Shimada [2]. PSU is an adaptive way to scale the depth
of a pipeline depending on the current processor workload. Similar to DVFS, PSU will scale down
the clock frequency of a processor depending on its workload. In contrast to DVFS, PSU will not
scale the supply voltage, but instead will bypass one or more pipeline registers in order to unify
two or more pipeline stages[2]. Therefore, when a pipeline register is bypassed, the combinational
logic on both sides of the register will come together as one pipeline stage[2]. This is visualized in

Figure 1 (Derived from Shimada et al. [2] ), which depicts the difference in the flow of logic when
pipeline stages are unified.

2



Combinational Logic B

Combinational Logic C

Pipeline Register for B

Pipeline Register for C

Pipeline Register for A

M

u

x

U
ni

fic
at

io
n 

Si
gn

al
(a) No Stage Unification

Combinational Logic B

Combinational Logic C

Pipeline Register for B

Pipeline Register for C

Pipeline Register for A

M

u

x

U
ni

fic
at

io
n 

Si
gn

al

(a) Stage Unification

Figure 1: Pipeline Stage Unification [2]

3.1 PSU Implementation

In the PSU implementation described by the authors, there are three predefined signals to be used
in the pipeline circuit. A full-time clock signal, part-time clock signal, and a unification signal are
each used for this implementation. The full-time and part-time clock signals will remain active
while there is no stage unification, but once pipeline stages are unified, the part-time clock signal is
disabled while the full-time signal remains active[2]. The unification signal is used to indicate that
pipeline stages are unified. The unification signal also drives a multiplexor that chooses between
the outputs of the most recent pipeline register and the one prior to it, and sends the values to
the next pipeline register[2]. This multiplexor can be seen in figure 1, where the active signals are
represented with solid black lines. The unification degree UN is used to represent that each set of
N pipeline stages are unified as a single pipeline stage [2]. In this context, degree U1 will have no
stage unification, while degree U2 will merge every set of 2 pipeline stages into a single stage. In
the analysis of J. Yao, S. Miwa, and H. Shimada, it was found that the latency of a unification
switch comes down to flushing the pipeline and scaling down or up the clock frequency [3].

3.2 PSU Energy Reduction

Many modern processors aim for a high clock frequency, and many architectures impose a deep
pipeline strategy to achieve this [2]. In the author’s processor implementation, they impose a deep
pipeline consisting of 20 pipeline stages, with the exception of load instructions having 2 extra
stages for write-back and commit [2]. Using unification degrees U2 and U4, this deep 20 stage
pipeline can be adaptively scaled to a shorter depth of 10 and 5 stages respectively, with load
instructions having 1 extra stage for both degrees [2, 3]. Due to the reduction in pipeline stages,
there is a corresponding reduction in clock cycles needed to execute a program [2]. When scaling
the pipeline depth, energy consumption is first reduced by scaling down the clock frequency and
disabling the part time clock signal to pipeline registers being bypassed [2]. Limiting the signals

3



to only the full time clock and unification signal will reduce the total load needed for the clock
driver [2]. Ideally, for the author’s PSU processor [2], the clock driver’s power consumption can be
reduced by 1/N for degree UN . Energy reduction is further increased by the reduction in program
execution clock cycles that comes from having fewer pipeline stages[2].

4 Static Pipelining

Static Pipelining, as described by I. Finlayson, G.-R. Uh, D. Whalley, and G. Tyson, takes a
different approach to optimizing energy consumption in a processor [4]. The authors explain that
in the classic pipeline, instructions will perform unnecessary actions leading to inefficient energy
consumption [4]. For example, non-immediate instructions will always sign extend the lower 16 bits
(in 32 bit machine) and send the value to the ALU. This led the authors to propose a technique
that focuses on removing these unnecessary inefficiencies. First, the authors introduce a micro-
architecture to support static pipelining which consists of a number of internal registers, in place of
pipeline registers [4]. To support compiler use of these internal registers, they propose an instruction
set with the ability to encode, into each instruction, the control for each action that the processor
should perform by utilizing these internal registers [4]. Table 1, which was derived from the author’s
descriptions of these internal registers, lists the 10 internal registers and their uses [4].

Internal Register Register Use

RS1 Register Source Values, used to hold values read from register file.
RS2

LV Load Value, used to hold values loaded from the data cache.

SEQ Sequential Address, used to hold the address of the next
sequential instruction at time of writing.

SE Sign Extend, used to hold a sign-extended immediate value.

ALUR These registers are used to hold the values calculated by the ALU.
If the PC is used as input to the ALU, then the result will go in the

TARG TARG register, otherwise result goes to the ALUR register.

FPUR FPU Result, used to hold values calculated by the FPU.

CP1 Copy 1 and 2, used to hold values copied from other internal
CP2 registers and for use during various optimizing compiler techniques.

Table 1: Internal Registers and Uses [4]

4.1 Static Pipeline Implementation

Static pipelining is supported in hardware by using internal registers, and supported in software
via assembly code compiler techniques. Instructions executing on a statically pipelined processor
are not broken up into multiple stages, as there are no pipeline registers the internal registers will
be explicitly read or written by the instruction each cycle [4]. Unlike pipeline registers, internal
registers are only written to or read from when needed by an instruction [4]. The processor proposed
by the author is split into the fetch stage and the rest of the calculations, in-essence representing two
stages [4]. Every operation after the instruction fetch is done in parallel because the instruction will
only perform the necessary actions required of itself by reading or writing to the internal registers

4



within a clock cycle[4]. These internal register values are held across clock cycles and can be utilized
by separate instructions [5].

The instruction set architecture for the author’s processor allows for each instruction to have
a set of effects. These effects roughly correspond to the operations found in the typical 5-stage
pipeline, where each effect is independent and will operate in parallel with the other effects of an
instruction [4]. Allowing the compiler to access the internal registers is what drives the unnecessary
actions in a traditional pipeline to be ignored [4]. In the author’s example of how source code is
compiled into assembly code, they first compile C source code into a partially optimized intermedi-
ate MIPS assembly representation [4]. The portions of the MIPS code that are not compatible with
the static pipeline are then manually transformed into intermediate MIPS code, and the entirety of
this intermediate code is compiled into optimized assembly code for a statically pipelined processor
[4].

Figure 2 shows an example of the process of going from a single C statement to statically
pipelined code. Some assumptions made when producing the code is that the value of a is stored
in r[1], the value of b is stored in r[2], and the address of c is stored in r[9]. The C code is
first compiled into its intermediate MIPS representation, then manually transformed to support a
statically pipelined processor. As seen in the figure, each MIPS instruction is broken down into its
corresponding set of effects, with each MIPS instruction’s corresponding statically pipelined code
being seperated by dashed lines. As an example, the first MIPS instruction which adds two register
values and stores the result in a separate register breaks down into setting the source register values,
processing the summation, and storing the summation back into a register. Therefore we set RS1
and RS2 accordingly, process the summation which is stored in ALUR, and set the r[3] register to
the value stored in the ALUR register.

4.2 Static Pipeline Energy Reduction

The static pipeline technique proposed by the author’s reduces energy consumption in a number
of ways. First, the energy consumption is reduced from the reduction in useless and inefficient
operations performed by the processor. Some of these inefficient operations include: 1) Accessing
register file to retrieve a value when it’s value will be provided by forwarding. 2) Sign extending a
value for a non-immediate instruction. 3) Writing value to register when the only consumer gets
the value via forwarding. 4) Executing memory address calculation when the offset operand is 0.
Since the operations for a statically pipelined instruction are performed in parallel, there is no need
for pipeline registers, which nullifies the overhead of having to pass values through the pipeline.
The author also mentions that each internal register can be accessed at a lesser energy cost than
accessing a centralized register file because internal registers are small and are placed closest tot
the portion of the processor that will use it [4]. Finally, since this technique exposes these internal
registers at the architecture level, it opens the door for undiscovered compiler optimizations leading
to better performance [4].

5



Figure 2: C Code to Statically Pipelined Code [4]

6



5 Conclusions

In this paper, I presented three distinct techniques that can be used to reduce the energy consump-
tion in a processor. DVFS is currently being used as a standard for reducing power consumption
in modern machines, but unfortunately the effectiveness of its energy reduction will continue to
decrease as transistor technology evolves. Pipeline stage unification is a technique used to conjoin
sets of pipeline stages into single stages. The advantage of PSU over DVFS, according to the au-
thors, is that PSU’s effectiveness will not decrease, but increase as hardware technology advances
[2]. The PSU study showed that current PSU implementations are 11% - 14% more effective at
reducing energy consumption than DVFS, and also that in 10 years PSU is predicted to be 27%
- 34% more effective than DVFS [2]. The last technique I analyzed was Static Pipelining, which
is achieved through an architectural overhaul of the processors datapath. This technique utilizes
internal registers to carry data over cycles, instead of using pipeline registers, and allows individual
instructions to access these registers as they are needed. In this way, many inefficient operations
can be avoided, as well as the pipeline information passing overhead, and energy consumption can
be reduced. All in all, reducing the energy consumption of processor is a very relevant field of
research, and I believe that scientists and scholars will continue to push for advancements leading
to more energy efficient processors.

References

[1] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency scaling: The laws of diminishing
returns,” in Proceedings of the 2010 international conference on Power aware computing and
systems, 2010, pp. 1–8.

[2] H. Shimada, H. Ando, and T. Shimada, “Pipeline stage unification: a low-energy consumption
technique for future mobile processors,” in Proceedings of the 2003 International Symposium on
Low Power Electronics and Design, 2003. ISLPED ’03., 2003, pp. 326–329.

[3] J. Yao, S. Miwa, H. Shimada, and S. Tomita, “A fine-grained runtime power/performance
optimization method for processors with adaptive pipeline depth,” Journal of Computer Science
and Technology, vol. 26, no. 2, pp. 292–301, 2011.

[4] I. Finlayson, G.-R. Uh, D. Whalley, and G. Tyson, “Improving low power processor efficiency
with static pipelining,” in 2011 15th Workshop on Interaction between Compilers and Computer
Architectures, 2011, pp. 17–24.

[5] D. Whalley, G. Uh, I. Finlayson, and G. Tyson, “An overview of static pipelining,” IEEE
Computer Architecture Letters, no. 01, pp. 17–20, jan 2012.

7


